Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Amaral, Luís A. (Ed.)To build better theories of cities, companies, and other social institutions such as universities, requires that we understand the tradeoffs and complementarities that exist between their core functions, and that we understand bounds to their growth. Scaling theory has been a powerful tool for addressing such questions in diverse physical, biological and urban systems, revealing systematic quantitative regularities between size and function. Here we apply scaling theory to the social sciences, taking a synoptic view of an entire class of institutions. The United States higher education system serves as an ideal case study, since it includes over 5,800 institutions with shared broad objectives, but ranges in strategy from vocational training to the production of novel research, contains public, nonprofit and for-profit models, and spans sizes from 10 to roughly 100,000 enrolled students. We show that, like organisms, ecosystems and cities, universities and colleges scale in a surprisingly systematic fashion following simple power-law behavior. Comparing seven commonly accepted sectors of higher education organizations, we find distinct regimes of scaling between a school’s total enrollment and its expenditures, revenues, graduation rates and economic added value. Our results quantify how each sector leverages specific economies of scale to address distinct priorities. Taken together, the scaling of features within a sector along with the shifts in scaling across sectors implies that there are generic mechanisms and constraints shared by all sectors, which lead to tradeoffs between their different societal functions and roles. We highlight the strong complementarity between public and private research universities, and community and state colleges, that all display superlinear returns to scale. In contrast to the scaling of biological systems, our results highlight that much of the observed scaling behavior is modulated by the particular strategies of organizations rather than an immutable set of constraints.more » « less
-
Abstract GIS analyses use moving window methods and hotspot detection to identify point patterns within a given area. Such methods can detect clusters of point events such as crime or disease incidences. Yet, these methods do not account forconnectionsbetween entities, and thus, areas with relatively sparse event concentrations but high network connectivity may go undetected. We develop two scan methods (i.e., moving window or focal processes), EdgeScan and NDScan, for detecting local spatial‐social connections. These methods capture edges and network density, respectively, for each node in a given focal area. We apply methods to a social network of Mafia members in New York City in the 1960s and to a 2019 spatial network of home‐to‐restaurant visits in Atlanta, Georgia. These methods successfully capture focal areas where Mafia members are highly connected and where restaurant visitors are highly local; these results differ from those derived using traditional spatial hotspot analysis using the Getis–Ord Gi* statistic. Finally, we describe how these methods can be adapted to weighted, directed, and bipartite networks and suggest future improvements.more » « less
An official website of the United States government
